THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4030 Differential Geometry 10 October, 2024 Tutorial

- 1. (Exercise 2-5.14 of [Car16]) The gradient of a differentiable function $f : S \to \mathbb{R}$ is a differentiable map $\operatorname{grad}(f) : S \to \mathbb{R}^3$ which assigns to each point $p \in S$ a vector $\operatorname{grad}(f)_p \in T_pS$ so that for all $v \in T_pS$, for $f \in \mathcal{F}_pS$.
 - $\operatorname{grad}(f)_p \cdot v = df_p(v)$. Since $\overset{\circ}{\sim}$ BER. Then Sub-(a) Express $\operatorname{grad}(f)$ in terms of the coefficients of the first fundamental form and the partial derivatives of f on the local parameterisation $X : U \to S$ at $p \in X(U)$.

Hit (
(b) Let
$$p \in S$$
 and $\operatorname{grad}(f)_p \neq 0$. Show that $v \in T_pS$ with $|v| = 1$ satisfies
(c) $\operatorname{grad}(f)_p \cdot v = \operatorname{dfp}(v)$ $df_p(v) = \max\{df_p(u) : u \in T_p(S), |u| = 1\}$
if and only if $v = \frac{\operatorname{grad}(f)_p}{|\operatorname{grad}(f)_p|}$. (Thus, $\operatorname{grad}(f)_p$ gives the direction of maximum
variation of f at p .)

- 2. (Exercise 2-5.11 of [Car16]) Let S be a surface of revoluion and C its generating curve. Let s be the arc length of C and denote $\rho(s)$ to be the distance to the rotation axis of the point of C corresponding to s.
 - (a) (Pappus' Theorem) Show that the area of S is

$$2\pi \int_0^\ell \rho(s) ds$$

where ℓ is the length of C.

- (b) Apply part (a) to compute the area of a torus of revolution.
- 3. (Exercise 2-6.1 of [Car16]) Let S be a regular surface covered by coordinate neighborhoods V_1 and V_2 . Assume that $V_1 \cap V_2$ has two connected components, W_1, W_2 , and that the Jacobian of the change of coordinates is positive in W_1 and negative in W_2 . Prove that S is non-orientable.

1. (Exercise 2-5.14 of [Car16]) The *gradient* of a differentiable function $f: S \to \mathbb{R}$ is a differentiable map $\operatorname{grad}(f): S \to \mathbb{R}^3$ which assigns to each point $p \in S$ a vector $\operatorname{grad}(f)_p \in T_p S$ so that for all $v \in T_p S$,

$$\operatorname{grad}(f)_p \cdot v = df_p(v).$$

- (a) Express $\operatorname{grad}(f)$ in terms of the coefficients of the first fundamental form and the partial derivatives of f on the local parameterisation $X: U \to S$ at $p \in$ X(U).
- (b) Let $p \in S$ and $\operatorname{grad}(f)_p \neq 0$. Show that $v \in T_pS$ with |v| = 1 satisfies

$$df_p(v) = \max\{df_p(u) : u \in T_p(S), |u| = 1\}$$

if and only if $v = \frac{\operatorname{grad}(f)_p}{|\operatorname{grad}(f)_p|}$. (Thus, $\operatorname{grad}(f)_p$ gives the direction of maximum variation of f at p.)

Sith: a)
$$T_{P}^{S}$$
 S We write great $(f)_{P} = w X_{1} + \beta X_{2}$ for some w, $\beta \in \mathbb{R}$
We have for $v = X_{1}$,
 $gread(f)_{P} \cdot X_{1} = df_{P}(X_{1}) = f_{1}$ where $f_{1} = \frac{\partial f}{\partial u_{1}}$
 $(\alpha X_{1} + \beta X_{2}) \cdot X_{1}$
So we have $\alpha g_{u} + \beta g_{21} = f_{1}$, $(g_{u}, g_{12})(\alpha) = (f_{1})$, (f)
Substituty $v = X_{2}$, get
 $\alpha g_{12} + \beta g_{22} = f_{2}$.

Solving (*), we get

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{g_{u}g_{2z}} \begin{pmatrix} g_{2z} - g_{1z} \\ -g_{2z} & g_{u} \end{pmatrix} \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix}$$
Note: if we choose

$$g_{1i} = f_{1i} \begin{pmatrix} Eucliden \\ Space \end{pmatrix}$$
The graduation of the second second

gugar giz

b) By Cauchy-Schwarz, me have $df_{p}(v) = grad(f)_{p} \cdot v$ < (grad (f)p. V < |grad(f)p|. /v[= |grad(f)p| vhen vish mit vector. So maximum is attained iff vand grad(f) are linearly dependent, \overline{r} . $V = \lambda \operatorname{grad}(f) p$ for some $\lambda \in \mathbb{R}$. V is a unit vector, $PO \quad \lambda = \frac{\pm 1}{[\operatorname{grad}(f) p]}$

- 2. (Exercise 2-5.11 of [Car16]) Let S be a surface of revoluion and C its generating curve. Let s be the arc length of C and denote $\rho(s)$ to be the distance to the rotation axis of the point of C corresponding to s.
 - (a) (Pappus' Theorem) Show that the area of S is

$$2\pi \int_0^\ell \rho(s) ds$$

where ℓ is the length of C.

(b) Apply part (a) to compute the area of a torus of revolution.

Silh: When, can take C to be in the x2-plane and axis
of interim to be the 2-axis.
S 2 C We write curve C to be
$$\alpha(s) = (f(s), g(s))$$

 $f(s), \alpha(s)$ where S to circlongth.
 $f(s), g(s) = (f(s) \cos \theta, f(s) \sin \theta, g(s))$
 $X = (-f(s) \sin \theta, f(s) \cos \theta, f(s) \sin \theta, g(s))$.
 $X_{s} = (f'(s) \cos \theta, f'(s) \sin \theta, g'(s)).$
So $g_{\theta s} = \begin{pmatrix} f^{2}(s) & 0 \\ 0 & f'(s)^{2} + g'(s)^{2} \end{pmatrix}$
 $i \ by arclongth ([\alpha'(s)] = 1).$
So $A = \iint clet c_{\theta s} d\theta ds = \iint i \int_{0}^{1} \sqrt{f^{2}(s)} d\theta ds$
 $X = 2\pi \iint [f(s)] ds = 2\pi \iint p(s) ds.$

6)	For	a to	rus of	revolution	rotati	circle	Centred	at (a, 0) with
• • •						 		
• • •		· · · · ·				 		
		A	= 4-	20		 		
				ruli		 		
• • •						 		
0 0 0						 		

3. (Exercise 2-6.1 of [Car16]) Let S be a regular surface covered by coordinate neighborhoods V_1 and V_2 . Assume that $V_1 \cap V_2$ has two connected components, W_1, W_2 , and that the Jacobian of the change of coordinates is positive in W_1 and negative in W_2 . Prove that S is non-orientable.

Sps for the sale of contractiction theat S is orientable. Then by lemme 3.17 of lecture notes, there is a smooth global chorce of wit normal N: S-3R?. $N(p) = \frac{(X_u \times X_v)(p)}{(X_u \times X_v)(p)!} \quad \text{for } p = X(u_v v),$ $(u_v, v_v) \in U.$ z_{τ} , $\chi(n) \in \mathcal{N}$ STOH, $N(p) = (\overline{X_{\overline{u}} \times \overline{X_{\overline{v}}}})(p)$ for $p = \overline{X}(\overline{u}, \overline{v})$ $|(\overline{\chi}_{\overline{u}} \times \overline{\chi}_{\overline{v}})(p)|$ (To, To) EU end $(\overline{\mu}) \subseteq V_2$. But for pe W2, me here $\mathcal{N}(p) = \frac{(\overline{X_{\overline{u}} \times \overline{X_{\overline{v}}}})(p)}{|(\overline{X_{\overline{u}} \times \overline{X_{\overline{v}}}})(p)|} = \frac{(\overline{X_{u} \times X_{v}})(p)}{|(\overline{X_{u} \times X_{v}})(p)|}$ 9(n'n) Stigh $\overline{(\overline{\chi_u} \times \overline{\chi_v})(p)}$ $= - \frac{(X_u \times X_v)(p)}{[(X_u \times X_v)(p)]} =$ a contradiction